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Abstract—We describe our submissions to the parallel and
cloud tracks of the SAT Competition 2022. Notable differences
over last year’s submission include a reworked clause sharing
mechanism with a new approach to distributed clause filtering;
further solvers and updated solver configurations; and an addi-
tional kind of memory awareness.

Index Terms—Parallel SAT solving, distributed SAT solving

I. INTRODUCTION

In this report we describe the configurations of our sys-
tem Mallob which we submit to this year’s International
SAT Competition. Mallob (Malleable Load Balancer / Multi-
tasking Agile Logic Blackbox) is a decentralized job schedul-
ing platform capable of prioritizing, balancing, and processing
many SAT instances at once [1]. However, due to the rules
of the competition, we configure our system to immediately
schedule a single instance (i.e., the problem input) with full
demand of resources and to quit after its processing.

II. SYSTEM AND SOLVER SETUP

As in last years [2], [3], we subdivide each physical compute
node into groups of four hardware threads each and run one
MPI process on each such group. Each MPI process then
deploys four core solvers. Contrary to last years where we
run solvers as separate threads within each MPI process,
this year each MPI process spawns a separate subprocess
which runs four solver threads. This has two advantages:
First, from a fault-tolerance perspective, individual solvers
crashing (e.g., due to pathological inputs or internal errors)
do not break the entire system but trigger a clean restart
of the concerned subprocess. Secondly, we can deliberately
restart individual solver processes for the purpose of memory
awareness (see IV.). Despite these benefits, we acknowledge
that this approach incurs some overhead for Inter-Process
Communication, especially for transferring the formula and
for periodic clause sharing.

In its current state, Mallob features four full-featured solver
interfaces, namely for Lingeling [4], Glucose [5], CaDiCaL
[6], and Kissat [6]. Most recently, we modified Kissat’s
codebase to support import and export of redundant clauses
(only triggered at decision level 0 and every 500 conflicts) as
well as setting initial phases for individual variables.

For the Parallel Track we submit a version with a portfolio
purely consisting of Kissat configurations. We refer to this
version as Mallob-Ki. In addition, we submit the most diverse
portfolio Mallob can currently employ to the Cloud Track:

We mix Kissat, CaDiCaL, Lingeling, and Glucose solvers
roughly weighted according to their relative base performance
and memory efficiency (eight parts Kissat, six parts CaDiCaL,
four parts Lingeling, and two parts Glucose). We refer to this
version as Mallob-Kicaliglu.

For both of these versions, we have identified strong solver
configurations by running each SAT solver in various different
configurations on the benchmarks of the International SAT
Competition 2020.

III. CLAUSE EXCHANGE

We have reimplemented and overhauled large portions of
Mallob’s clause sharing strategy. Most significantly, we intro-
duce a new approach to clause filtering, i.e., the problem of
deciding for a shared clause c and a solver S whether S has
received or produced c before and should therefore not receive
c (again). The previous clause filtering mechanism of Mallob
(inherited from HordeSat [7]) featured multiple large Bloom
Filters at each solver process which occasionally result in
erroneous rejection of unseen clauses. The probability for such
false positives grows with the number of clauses registered in
the filters, which may become noticeable in large distributed
systems with millions of clauses being shared.

Our new clause filtering mechanism is exact and requires
memory proportional to the set of “potentially good” clauses
produced by a given solver process. We use two local datas-
tructures: First, a hash table H of clauses maps each produced
clause to a small bundle (32 bits) of meta data, including its
LBD score, which local solver(s) produced it, and whether it
was shared before. Secondly, a buffer structure B maintains
a space-limited selection of the best clauses ready for export,
discarding some of the worst clauses if better clauses arrive.
Clause quality is determined by clause length and (secondar-
ily) by LBD score. Our approach functions as follows:
• A clause c learnt by a solver which meets a basic quality

criterium (length ≤ 20) is checked against H . If c /∈ H
and if c fits into B, then c is inserted into B and H .

• At clause exchange time, each process flushes the highest
priority clauses from B up to a certain total length.

• A buffer b of globally best clauses is aggregated and then
shared among all processes as described in [1].

• Each process iterates over each clause ci ∈ b and checks
whether qi := [ci ∈ H and ci is marked as shared] = 1.
A bit vector ṽ is constructed: ṽ[i] := qi for each ci. If
c ∈ H and c was not shared before, c is marked as shared.



• All created bit vectors ṽ are reduced to a single filter
vector v via bitwise OR operations. v is aggregated and
then shared among all processes just like b.

• Each process iterates over b and v simultaneously and
only considers clauses ci for which v[i] = 0. Each such
clause c is forwarded to all local solvers which have not
produced c yet according to H[c].

The described approach ensures that a clause c shared in a
given epoch e ∈ N will not be re-shared in a later epoch e′ > e,
since there is at least one process where c was produced and
where, consequently, it was marked as shared in epoch e. At
epoch e′, this status is propagated to all processes via v, hence
c is filtered. We can still allow for clauses to be reshared after a
certain period of time elapsed: We can store in H[c] the epoch
e where c was last shared, and we re-admit c for sharing if e
is sufficiently old. Likewise, we can allow re-sharing a clause
if its LBD score improved since the last sharing. However, we
did not find re-sharing upon improved LBD to be promising,
and we set the minimum period until a clause is re-shared to
a conservative 500 s.

We implemented B as an array of buckets, one bucket
for each clause length 1 ≤ l ≤ 20. Each bucket features
a list of clauses which can be added to or removed from.
A global budget integer represents the remaining number of
literals which can still be inserted until B is full. If this budget
is insufficient for inserting a given clause c of length l, an
attempt is made to discard clauses from a bucket l′ > l
in order to “steal” space for c. If this is unsuccessful, c is
discarded. With this flexible buffering structure, we account for
the observation that different solvers export differently sized
clauses at different points in time during the solving procedure:
For this reason, the available space is balanced dynamically
among the different clause quality levels.

We employ the same data structure as B for the import
buffer BS of each solver S. This way, the buffering of incom-
ing clauses is robust towards solvers which may not import
clauses for a long period of time and therefore necessitate
dropping some buffered clauses.

IV. MEMORY AWARENESS

Last year we introduced a rudimentary kind of memory
awareness to Mallob: When starting to solve a formula, the
number of contained literals is used to decide on how many
threads to spawn in each MPI process. While this measure can
be effective for some inputs, it does not address all issues.
Memory usage which is initially acceptable but then grows
to unsustainable levels is not accounted for. Furthermore, for
extreme inputs even spawning a single solver thread for each
MPI process may require too much memory.

This year we introduce an additional measure to counteract
excessive memory usage. At program start, we create one
communicator for the MPI processes at each physical machine.
In other words, we identify groups of MPI processes with
a shared RAM budget. Each group periodically checks the
current memory usage of its machine and exchanges certain
diagnostics for each MPI process. If a certain memory limit

is exceeded (> 90% of RAM used), one or multiple MPI
processes are chosen to trigger a memory panic. The heuristic
which decides on the particular process(es) considers the
memory used by each process as well as the importance of
its role in the portfolio. A memory panic at a process which
currently runs t solver threads triggers an immediate restart of
the SAT solving process with t−1 solver threads. For extreme
cases this can go as low as t = 0, i.e., no more solvers are
executed on this MPI process. The decision heuristic ensures
that at least one active solver thread remains on each machine.
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