
Engineering HordeSat Towards Malleability:
mallob-mono in the SAT 2020 Cloud Track

Dominik Schreiber
Institute of Theoretical Informatics
Karlsruhe Institute of Technology

Karlsruhe, Germany
dominik.schreiber@kit.edu

Abstract—We briefly present the massively distributed SAT
solver which we submit to the Cloud Track of the SAT Com-
petition 2020, being the solver engine of a novel framework
for massively parallel and distributed malleable job scheduling
applied to SAT solving. Our solver is based on HordeSat; notable
differences include completely asynchronous communication, a
much more careful clause exchange, and some internal perfor-
mance improvements.

Index Terms—Parallel SAT solving, distributed SAT solving

I. INTRODUCTION

In order to improve massively parallel problem solving “on
demand” in a cloud context, we introduce malleability to
parallel SAT solving as a part of a novel framework named
“mallob” for massively parallel and distributed malleable job
scheduling [1]. Malleability is the property of a computation
to dynamically handle a varying amount of computational
resources (i.e. cores or nodes) during its execution, opening
up vast possibilities for performing highly dynamic load
balancing on many jobs of varying demand and priority that
run in parallel on some large-scale infrastructure.

However, the SAT competitions do not involve malleable
computations nor solving multiple instances at the same time.
As a consequence, we added a special configuration to our
system for the sole purpose of solving a single instance with
full computational power from the beginning and named it
“mallob-mono” (mallob mono instance mode). In the follow-
ing, we will describe the most relevant aspects of this solver
engine and the surrounding architecture.

II. OVERVIEW

On each node we start one MPI process for each set of four
available (virtual) CPUs such that each process can employ
four solver threads. HordeSat [2] serves as a foundation
for the solver engine residing on each process. Internally,
we use Lingeling as a solver backend just like HordeSat’s
default configuration. However, we updated the used Lingeling
version from ayv (2014) [3] to bcj (2018) [4]. We also updated
the native diversification routines of Lingeling according to the
diversification of the 2018 version of Plingeling. We let one
out of 14 solvers in our portfolio perform local search (using

Evaluation of this work was partially performed on the supercomputer
ForHLR funded by the Ministry of Science, Research and the Arts Baden-
Württemberg and by the Federal Ministry of Education and Research.

YalSAT [4] as a backend) while the others are CDCL solvers
with different set options.

We adjusted and replaced significant portions of the code-
base of HordeSat in order to match the requirements of our
malleable framework. As such, we enabled the suspension and
resumption of particular solver instances, made all communi-
cation among the nodes completely asynchronous, and enabled
descriptions of SAT formulae to be serialized and transferred
directly over message passing instead of assuming that the
formula resides on each node. Many of these changes are
unimportant for the SAT competition. Some general perfor-
mance improvements were integrated; for example, we reduce
lots of unnecessary getrusage system calls by supplying
a cheap and approximative time measuring callback over the
Lingeling interface instead.

In the following we describe our clause exchange mecha-
nism and the related clause filtering, which are the most promi-
nent differences between HordeSat and our solver engine.

III. CLAUSE EXCHANGE

HordeSat initiates an All-to-all exchange of learnt
clauses every second by a synchronous collective operation
(MPI_Allreduce). The clause buffer size of each node
is of fixed length 1500 and the entire buffer is sent around
regardless of the degree to which it is filled. Duplicate clauses
are detected by HordeSat’s clause filters only after the full
operation succeeded. If an exported local clause buffer is filled
to less than 80%, one of the local solver threads is asked
to increase its clause production. Unit clauses are are always
shared and are exempt from being filtered. As a result, the first
few clause exchanges are often flooded with large numbers of
highly redundant unit clauses after first simplifications and
preprocessing steps.

We have made the clause exchange entirely asynchronous
while ensuring that one broadcast of a globally aggregated
clause buffer takes place every second. We aggregate buffers
of learnt clauses along a binary tree of all computing nodes.
Clause buffers sent over this tree are always in compact
shape, i.e., without any unused portions of memory. During
the reduction, instead of just concatenating the buffers, inner
nodes do a three-way merge of their local clauses and the
clauses of their children, preferring short clauses and filtering
out duplicates with an additional Bloom filter, a datastructure

that we took from original HordeSat [2]. Thereby, we limit
the maximum length b(u) of a merged clause aggregation
containing clauses from u nodes:

b(u) = du · αlog2(u) · 1500e

Note that α = 0.5 makes the length of a clause aggregation
converge to 1500 the more nodes are involved, and α = 1.0
makes the limit grow linearly in the number of nodes just like
in HordeSat. We set α = 0.75 to find a middle ground between
these extremes.

Additionally, no clauses of length greater than five are
shared. With this strict limitation we expect to avoid a lot of
communication volume and internal work in the SAT solvers
while still sharing lots of potentially interesting information
among the solvers.

After the reduction reaches the binary tree’s root node, the
clause aggregation is broadcast through the tree to all other
nodes and locally digested when appropriate.

IV. CLAUSE FILTERING

We also made some adjustments to HordeSat’s clause filter-
ing mechanic used when clauses are exported or imported. We
added duplicate checking for unit clauses both to each clause
filter and to our duplicate checking during the reduction. This
check does not rely on Bloom filters but functions with exact
hash sets, using one of the commutative hash functions that
are employed in the Bloom filters. This way we do not get
any false positives for unit clauses and make sure that each
such clause is being shared at least once.

Last but not least, we implemented a mechanic similar
to restarts into the clause filters. The authors of original
HordeSat already intended to periodically clear clause filters
in order to be able to share clauses after some time, but it was
not implemented. We introduce a quite careful “forgetting”
of shared clauses: Every five minutes, in one iteration over
all set bits in the filter each bit is unset with probability
4
√
0.5 ≈ 15.91%. As every clause inserted into the filter sets

four bits from four hash functions, the probability that a clause
is forgotten is close to P (forgotten) = P (≥ 1 bit unset) =
1 − P (0 bits unset) = (4

√
0.5)4 = 0.5. For the unit clauses,

every element in the explicit set is forgotten with probability
0.5. Overall, approximately half of all clauses are effectively
forgotten and can be shared again.

V. LICENSE

Our system mallob and, by extension, our submitted solver
is licensed under the GNU Lesser General Public License
(LGPLv3). As the licensing of Lingeling was changed to
MIT with the 2018 version, our system consists of fully Free
Software.

VI. CONCLUSION

We described the central aspects of our massively parallel
SAT solver and are excited to see how it performs in the AWS
environment of the competition.

While our competitor does include some computational
overhead due to its malleable job scheduling aspects, we still
expect that our solver will overall outperform original Horde-
Sat due to various improvements of the internal workings of
the portfolio solver and notably the improved clause exchange.

ACKNOWLEDGMENT

Many thanks to Tomáš Balyo and Markus Iser for fruitful
discussions regarding HordeSat and its clause exchange.

REFERENCES

[1] P. Sanders and D. Schreiber, “Massively parallel malleable job scheduling
for SAT solving.” to be published.

[2] T. Balyo, P. Sanders, and C. Sinz, “Hordesat: A massively parallel portfo-
lio SAT solver,” in International Conference on Theory and Applications
of Satisfiability Testing, pp. 156–172, Springer, 2015.

[3] A. Biere, “Yet another local search solver and Lingeling and friends
entering the SAT competition 2014,” Sat competition, vol. 2014, no. 2,
p. 65, 2014.

[4] A. Biere, “CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT
entering the SAT competition 2018,” Proc. of SAT Competition, pp. 13–
14, 2018.

