
Lifted Logic for Task Networks:
TOHTN Planner Lilotane in the IPC 2020

Dominik Schreiber
Karlsruhe Institute of Technology

dominik.schreiber@kit.edu

Abstract

We present our contribution to the International Planning
Competition (IPC) 2020. Our planner Lilotane builds upon
ideas established by Tree-REX and encodes a Totally Ordered
Hierarchical Task Network (TOHTN) planning problem into
incremental formulae of propositional logic (SAT). Lilotane,
however, instantiates reductions and actions lazily and mini-
malistically without the need for full grounding, hence accel-
erating the planning process significantly. We discuss the re-
sults of the IPC and conclude that Lilotane, scoring second in
the Total Order track, is an overall competitive system, what
demonstrates the viability of our approach and its significance
for future research.

Overview
In this report we present Lilotane (’lı·lo·teın, Lifted Logic for
Task Networks), the first Satisfiability (SAT) based planner
for Totally Ordered Hierarchical Task Network (TOHTN)
problems that operates on a lifted planning problem. The de-
sign of Lilotane is heavily motivated by the observation that
grounding an HTN planning problem (Ramoul et al. 2017;
Behnke et al. 2020) induces an unavoidable worst-case com-
binatorial blowup with respect to the input size, and that
this blowup can hinder SAT-based HTN planners to scale to
larger problems even if they are logically of simple nature.
Lilotane, by contrast, fully circumvents the stage of ground-
ing and instead encodes a lifted problem representation into
propositional logic.

The general planning procedure of our planner is similar
to the planning pipeline known from its predecessor Tree-
REX (Schreiber et al. 2019) as well as from totSAT (Behnke,
Höller, and Biundo 2018):

1. The formal description of a planning problem Π =
(D, sI , T), where D is an HTN planning domain, sI is an
initial state, and T is a sequence of initial tasks, is parsed
and preprocessed in some way.

2. Propositional logic clauses describing the problem’s up-
most yet unencoded hierarchical layer Ll are added, a
fully expanded task network is assumed, and a SAT solver
is run on the resulting formula.

3. If the solver finds a model, a plan is decoded from the sat-
isfying assignment to the Boolean variables and returned.
Otherwise, go to 2.

Algorithm 1: Lilotane Procedure (simplified)
Input: Π = (D, sI , T)
Result: Plan π

1 Preprocess Π; // parsing, simplification
2 H := 〈〉;
3 L0 := 〈 CreateInitialPosition(T, sI) 〉;
4 Encode(L0); // encode first layer
5 H := H ◦ 〈L0〉;
6 for l = 0, 1, . . . do

// instantiate new layer
7 Ll+1 := 〈〉;
8 S := (sI , ∅); // reachable facts
9 x′ := 0;

10 for x = 0, . . . , |Ll| − 1 do
// generate child positions of Pl,x

11 el,x := max{1,max{|subtasks(r)| | r ∈ Pl,x}};
12 for z = 0, . . . , el,x − 1 do
13 Pl+1,x′ := Instantiate(Pl,x, z, S);
14 Ll+1 := Ll+1 ◦ 〈Pl+1,x′〉;
15 S := S ∪ possibleFactChanges(Pl+1,x′);
16 x′ := x′ + 1;
17 end
18 end

// encode new layer
19 Encode(Ll+1);

// finalize layer, attempt to solve
20 H := H ◦ Ll+1;
21 result := Solve(H);
22 if result is SAT then
23 return Decode(H, result);
24 end
25 end

The main difference between previous approaches and
Lilotane is that the latter avoids the complete grounding of
the problem in step 1; instead we perform lazy instantiation
of operators and methods in step 2, just in time for when they
are needed. We avoid to instantiate all free arguments of an
action or a reduction occurring at some place of the hierar-

ε εa
ε

r

ε

r′

ε ε

a

a

a
r′
r

x

x′ x′ + 1 x′ + 2

l

l + 1

a
r′
r

x
l

Figure 1: Sketch of Lilotane’s instantiation procedure.
Above: Position x at layer l contains three operations (re-
ductions r and r′, and action a) with different possible chil-
dren. Below: New positions x′, . . . , x′ + 2 are appended to
layer l + 1 by aggregating the respective possible children.

chy. Instead we introduce pseudo-constants whose seman-
tics we define directly in propositional logic. In this report,
we briefly elaborate on these techniques in the upcoming
sections, provide some technical insights, discuss the per-
formance of Lilotane within the IPC, and provide a brief
conclusion and outlook. Schreiber (2021) provides a more
detailed presentation and discussion of the work at hand.

Instantiation
The base algorithm of our approach is illustrated in Alg. 1.
After receiving the lifted problem description from pan-
daPIparser, we instantiate the problem’s hierarchy from top
to bottom, i.e., we begin with an initial layer following from
the problem description (line 3) and then construct layer l+1
on the basis of layer l. Each operation (i.e., action or reduc-
tion) at some position of layer l can induce one or several
new positions at layer l + 1. Each such new position may
again feature a variety of different operations, as illustrated
in Fig. 1. Only one such operation at each position will be
chosen by a SAT solver for the final plan. This approach is
based on Tree-REX (Schreiber et al. 2019) where the same
layout of layers was used but its construction was based on
a problem’s full grounding. By contrast, we instantiate op-
erations just when needed to achieve some subtask, and we
preserve free arguments of methods instead of instantiating
them with all possible combinations of constants.

As we instantiate each layer in chronological order (“from
left to right”), we can maintain sets S of positive and nega-
tive facts which may possibly occur, beginning with the ini-
tial state (line 8) and adding any direct or indirect effects
of inserted operations (line 15). We can use these fact col-

lections to discard any operations with a precondition that
turns out to be impossible to achieve in line 13. In line 15
we determine the possible effects of a given operation us-
ing a conservative overestimation which we compute by a
traversal of the (lifted) recursive children of a method. In ad-
dition, we logically infer new preconditions for a method by
recursively aggregating the preconditions and effects of its
possible children: This helps us to profit from the described
pruning methods even on domains which do not natively fea-
ture any method preconditions.

By allowing for free arguments to remain in an operation,
we significantly reduce the number of instantiated actions
and reductions. Consider an example task (navigate
?rover ?from ?to)which, according to its parent task
(investigate A), evaluates to (navigate ?rover
?from A). Performing a conventional instantiation we
receive tasks (navigate R1 B A), (navigate R1
C A), (navigate R1 D A), (navigate R2 B A)
and so on. Our algorithm avoids this blowup by instantiat-
ing only one task: (navigate α β A). Thereby, α and
β are new symbols which did not occur in the problem be-
fore and which we call pseudo-constants. With our novel
SAT encoding we can let the solver decide which partic-
ular constant to substitute each pseudo-constant with. Our
instantiation algorithm introduces a pseudo-constant when-
ever the valid domain of a free variable is larger than one,
i.e., whenever there is a nontrivial choice to make regarding
the substitution.

We introduced several further techniques to increase per-
formance, such as (i) the sharing of pseudo-constants among
multiple operations and the notion of an operation dominat-
ing another operation if it represents a superset of ground
operations; (ii) the retroactive pruning of any subtree of op-
erations which turned out to be impossible to achieve; (iii)
the transformation of certain reductions into equivalent ac-
tions; and more.

Encoding
The general structure of our propositional logic encoding
is an adaptation of the Tree-REX encoding (Schreiber et al.
2019). The main difference is that we now must deal with ac-
tions, reductions, and facts containing pseudo-constants. We
now provide some central, slightly simplified clause defini-
tions for illustration purposes and refer to Schreiber (2021)
for the complete specification.

As in previous work we use one Boolean variable for each
occurring reduction, action, and fact per position per layer
of the problem. These variables are assigned regardless of
whether the object contains pseudo-constants or not. Also,
we have one variable primitive(l, i) representing whether
position i at layer l features a primitive operation, i.e., an
action and not a reduction.

In addition, we introduce global variables [κ/c] that corre-
spond to substituting some pseudo-constant κ with an actual
constant c. For each pseudo-constant κ we add clauses∨

c∈dom(κ)

[κ/c] ∧
∧

c1 6=c2∈dom(κ)

¬[κ/c1] ∨ ¬[κ/c2],

i.e., exactly one of the possible substitutions of κwith a con-
stant from its possible domain, dom(κ), must hold.

Next, we define the semantics of facts containing pseudo-
constants, which we call pseudo-facts. Let fp be a pseudo-
fact and for each of its pseudo-constants κ let cκ be one of
the possible constants to be substituted such that substituting
each κ with cκ leads to ground fact f .(∧

κ∈fp

[κ/cκ]
)
⇒
(
holds(fp, l, i)⇔ holds(f, l, i)

)
In words, we enforce a pseudo-fact to be equivalent to the
ground fact it corresponds to when performing particular
substitutions. This rule does imply that we need to fully in-
stantiate all potentially occurring facts at the respective po-
sition; yet, we claim that there are commonly much fewer
ground facts than there are actions or reductions.

Frame axioms are encoded only for ground facts, as the
meaning of pseudo-facts is well-defined by the previous sets
of clauses. We add clauses as follows:

(i) If a fact f changes its value, then either the position
is non-primitive, or some action directly supports this fact
change, or some pseudo-action indirectly supports the fact
change. (ii) If fact f changes its value and action a from the
indirect support is applied, then some set of substitutions
must be active which unify some effect fp of a with f .

Note that for (ii), in the general case a transformation of
a Disjunctive Normal Form (DNF) into Conjunctive Nor-
mal Form (CNF) is required when a features many different
pseudo-facts as effects which can be unified to f . We use a
simple compilation which builds a tree of literals and then
obtains CNF clauses by traversing it.

Compared to a SAT encoding based on a ground repre-
sentation, there are some subtle new edge cases to consider.
For instance, we need to add further clauses which constrain
the sets of possible substitution combinations (due to invari-
ant preconditions which we do not encode directly), retroac-
tively restrict the domain of a pseudo-constant to incorporate
argument type restrictions of a child operation, and condi-
tionally disable certain negative action effects if an equiva-
lent fact also occurs as a positive effect in the action.

We consider our new encoding to be structurally more
complex than that of Tree-REX but observed empirically that
our approach not only significantly cuts the time spent for
instantiation but also leads to much smaller formulae, often-
times by orders of magnitude.

Technical Remarks
Our planner is written from scratch in C++ (i.e., we did
not reuse any code from previous planners). In the compe-
tition version we use SAT solver Glucose (Audemard and
Simon 2009) with kind permission of the authors: Empir-
ically we found this solver to work best on the class of
formulae generated by our approach. We build upon pan-
daPIparser (Behnke et al. 2020) for parsing planning prob-
lems specified in HDDL and for performing light prepro-
cessing tasks on the problem’s lifted representation. Lilotane
is free software licensed under the GNU General Public
License (GPL) v3.0; additional legal constraints may ap-
ply depending on the licensing of the particular SAT solver

0 250 500 750 1000 1250 1500 1750

Run time t / s

0

100

200

300

400

500

#
in

st
a
n

ce
s

so
lv

ed
in
≤
t

s

HyperTensioN

Lilotane

PDDL4J-TO

PDDL4J-PO

SIADEX

pyHiPOP

Figure 2: Run times overview of the IPC Total Order track.
Each point (t, y) of participant p corresponds to an instance
solved at least once by p in t seconds on average.

Lilotane is compiled with. Our software is available at
github.com/domschrei/lilotane.

Post-IPC Discussion
We now discuss the results of the International Planning
Competition (IPC) 2020.

A large set of diverse benchmark problems from various
authors was gathered for the IPC, what will certainly facili-
tate thorough evaluations of TOHTN planners in the future.
Compared to most previous evaluations in TOHTN planning
(Schreiber et al. 2019; Behnke, Höller, and Biundo 2018)
we observed that the peak difficulty of problems has been
increased substantially: Oftentimes a domain known from
previous evaluations was extended by ten more instances,
each of which larger than any previous instance. This means
that a planner reaching a near-perfect score on some domain
is generally a much stronger result than before.

Lilotane scored the second place in the Total Order track
of the IPC 2020. It found a plan for 548 out of 892 in-
stances in at least one out of ten repetitions and reached an
IPC score of 11.6. Lilotane was outperformed by progres-
sion search planner HyperTensioN which reached a consid-
erably better score of 13.51 and found a plan for 545 in-
stances in at least one repetition. HyperTensioN solved 84%
of its instances in less than a second. Lilotane only solved
41% of its instances in under a second and solved 84% in
under one minute. Overall we observed that while the IPC
score benefits the overall much faster execution times of Hy-
perTensioN, Lilotane performed similarly to HyperTensioN
in terms of robustness and, unlike HyperTensioN, was able
to solve some instance(s) on every single domain.

All further competitors scored significantly lower. In par-
ticular, Lilotane outperformed the only ground approach
participating, PDDL4J, on all but four domains. HyperTen-
sioN scored best on 15/24 domains and Lilotane scored best
on 8/24 domains; only a single domain (Entertainment) was
neither won by HyperTensioN nor by Lilotane.

Lilotane’s worst performances are on the domains
Blocksworld-HPDDL, Minecraft(-Player), and Multiarm-

Blocksworld. We noticed that each of these domains leads
to deep and large hierarchical task networks which favor
greedy progression search planners over planners such as
Lilotane which are required to instantiate the entire hierar-
chy with all possible alternatives up to the layer where a plan
can be found. Furthermore, compiled universal quantifica-
tions in Blocksworld-HPDDL and Multiarm-Blocksworld
lead to many preconditions per operator which are compara-
bly costly for our encoding.

By contrast, our planner excelled on domains such as
Monroe (complex goal and task recognition problems on
top of a disaster management domain, see Höller et al.
2018) and Woodworking. The latter domain encompasses
large manifacturing and processing tasks and notably fea-
tures a high number of arguments per operator and method.
As our approach keeps free arguments lifted, it can handle
this domain very well. We are also pleased to observe that
Lilotane scored well on the Childsnack domain: This do-
main is a textbook example for a logically trivial domain
which leads to huge ground representations. Hence, prior
SAT-based approaches have considerable problems with this
domain while our approach solves even large problems with
relative ease.

Although the IPC was an agile competition where only
run times were of interest, we also want to shed light on
the length of the plans found by the best competitors (with
respect to the number of actions in a plan). We found that
Lilotane produced considerably shorter plans than the win-
ner: We filtered out all 439 instances for which both Lilotane
and HyperTensioN found a plan on some runs and then aver-
aged the found plan length over all successful runs for each
instance. On 264 instances Lilotane found shorter plans on
average, on 77 instances the found plans are of equal aver-
age length and on 98 instances HyperTensioN found shorter
plans on average. Summed up over all these instances, the
number of actions reported by HyperTensioN corresponds
to 229% of the number of actions reported by Lilotane. This
significant difference in plan quality can be explained by the
careful iterative deepening procedure of Lilotane: Any found
plan length is bounded by the size of the layer where it was
found, and Lilotane finds a plan on the very first layer where
any plan can be found.

Conclusion and Outlook
We presented our submission to the IPC 2020 named
Lilotane which is the first lifted SAT-based HTN planning
system. Lilotane showed promising performance and con-
vinced on a large and diverse set of benchmarks with respect
to its robustness and the high-quality plans it finds. As such,
the performance of Lilotane in the IPC 2020 demonstrates
that SAT-based HTN planning without grounding is not only
viable, but in fact a highly appealing approach if done care-
fully. We expect these results to open up new perspectives
for SAT-based planning in related problem classes. We refer
to a separate article (Schreiber 2021) which discusses the re-
search at hand in more detail, provides proofs of correctness,
and describes further improvements of Lilotane integrated
after the planner submission deadline of the IPC.

Acknowledgments
This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No. 882500).

The author would like to thank Marvin Williams for his
persevering exploration of lifted SAT encodings for classical
planning (Williams 2020), motivating the author to pursue a
lifted SAT encoding for HTN planning as well.

Furthermore, the author thanks the IPC organizers for
their diligent work on this important competitive event and
specifically Gregor Behnke for fruitful discussions regard-
ing the results of the IPC 2020 and for providing an HDDL
parser the author made thankful use of.

Last but not least, many thanks to Damien Pellier, Hum-
bert Fiorino, and Tomáš Balyo who introduced the author to
the exciting topic of SAT-based planning and HTN planning.

References
Audemard, G., and Simon, L. 2009. Predicting learnt
clauses quality in modern SAT solvers. In Twenty-first In-
ternational Joint Conference on Artificial Intelligence, 399–
404.
Behnke, G.; Höller, D.; Schmid, A.; Bercher, P.; and Biundo,
S. 2020. On succinct groundings of HTN planning prob-
lems. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, 9775–9784.
Behnke, G.; Höller, D.; and Biundo, S. 2018. totSAT –
totally-ordered hierarchical planning through SAT. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 6110–6118.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2018.
Plan and goal recognition as HTN planning. In 30th In-
ternational Conference on Tools with Artificial Intelligence,
466–473. IEEE.
Ramoul, A.; Pellier, D.; Fiorino, H.; and Pesty, S. 2017.
Grounding of HTN planning domain. International Journal
on Artificial Intelligence Tools 26(05):1760021.
Schreiber, D.; Pellier, D.; Fiorino, H.; et al. 2019. Tree-
REX: SAT-based tree exploration for efficient and high-
quality HTN planning. In Proceedings of the Twenty-
Ninth International Conference on Automated Planning and
Scheduling, 382–390.
Schreiber, D. 2021. Lilotane: A lifted SAT-based approach
to hierarchical planning. Journal of Artificial Intelligence
Research 70:1117–1181.
Williams, M. 2020. Partially instantiated representations for
automated planning. Master’s thesis, Karlsruhe Institute of
Technology.

