
PASAR – Planning as Satisfiability with Abstraction Refinement

Nils Froleyks, Tomáš Balyo, Dominik Schreiber
Karlsruhe Institute of Technology

Karlsruhe, Germany
n.froleyks@gmail.com, {tomas.balyo,dominik.schreiber}@kit.edu

Abstract

One of the classical approaches to automated planning is the
reduction to propositional satisfiability (SAT). In this paper,
we present a further improvement to SAT-based planning by
introducing a new algorithm named PASAR based on the
principles of counterexample guided abstraction refinement
(CEGAR). As an abstraction of the original problem, we use
a simplified encoding where interference between actions is
generally allowed. Abstract plans are converted into actual
plans where possible or otherwise used as a counterexam-
ple to refine the abstraction. Using benchmark domains from
recent International Planning Competitions, we compare our
approach to different state-of-the-art planners and find that,
in particular, combining PASAR with forward state-space
search techniques leads to promising results.

Introduction
Planning is the problem of finding a sequence of actions –
a plan – that transforms the world from some initial state to
a goal state. The world is fully-observable (the entire world
state is known), deterministic (the exact effects of execut-
ing an action are known) and static (only the agent we make
the plan for changes the world). The number of the possi-
ble states of the world as well as the number of possible
actions is finite, though possibly very large. We will assume
that the actions are instantaneous and therefore we only need
to deal with their sequencing. Actions have preconditions,
which specify in which states of the world they can be ap-
plied as well as effects, which dictate how the world will be
changed after the action is executed.

Satisfiability (SAT) based planning is one of the well
established approaches to automated planning. It is based
on the idea of encoding a planning problem instance into
a sequence of SAT formulas and then use a SAT solver
to solve them. The method was first introduced by (Kautz
and Selman 1992) and is still very popular and competi-
tive. Two reasons for this popularity are the rapidly increas-
ing power of SAT solvers, which are becoming more ef-
ficient year by year, and various improvements that have

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

been made to the method since its introduction. Some ex-
amples of these improvements are new compact and ef-
ficient encodings (Huang, Chen, and Zhang 2010; Rinta-
nen, Heljanko, and Niemelä 2006; Robinson et al. 2009;
Balyo 2013), better ways of scheduling the SAT solvers
(Rintanen, Heljanko, and Niemelä 2006), specialized SAT
solving heuristics for planning problems (Rintanen, Hel-
janko, and Niemelä 2006), and – most recently – using in-
cremental SAT solving (Gocht and Balyo 2017).

In this paper we introduce a new algorithm named PASAR
for SAT-based planning by utilizing the counterexample
guided abstraction refinement technique (Clarke et al. 2000).
The basic idea of PASAR is that we encode a relaxation of
the planning problem instance to SAT, i.e., we leave out
some of the clauses, thus obtaining an abstraction of the
proper encoding. Then we find a solution to the SAT for-
mula, which can be decoded into a sequence of actions P ′.
If P ′ is a valid plan, the procedure terminates. Otherwise,
we attempt to transform the abstract plan into a valid plan
using various techniques from conventional planning as well
as a number of custom optimizations. If we fail to compute
a valid plan, P ′ constitutes a counterexample to our abstract
encoding and we need to refine it. We refine our abstrac-
tion by adding additional clauses (derived from P ′) to our
formula. We repeat the cycle of solving our formula and re-
fining our abstraction until we arrive at a valid plan.

The experimental results based on benchmarks from
the recent International Planning Competitions show that
PASAR solves a broad set of instances, performing better
than state-of-the-art SAT-based planning in various cases.
We also combine PASAR with forward state-space search
techniques and find that such a combined approach signifi-
cantly increases the amount of instances solved by our plan-
ning system.

Preliminaries
We give the basic definitions of the formalisms and tech-
niques used in the paper.

Planning
In the introduction we briefly described what planning is, in
this section we give the formal definitions. We will use the

 A B C A B C

Figure 1: The initial state (left) and the goal state (right) for
the Trucking planning domain.

multivalued SAS+ formalism (Bäckström and Nebel 1995)
instead of the classical STRIPS formalism (Fikes and Nils-
son 1971) based on propositional logic.

A planning task Π in the SAS+ formalism is defined as a
tuple Π = (X,O, sI , sG) where
• X = {x1, . . . , xn} is a set of multivalued variables with

finite domains dom(xi).
• O is a set of actions (or operators). Each action a ∈ O

is a tuple (pre(a), eff(a)) where pre(a) is the set of pre-
conditions of a and eff(a) is the set of effects of a. Each
precondition and each effect is of the form xi = v where
xi ∈ X and v ∈ dom(xi).

• A state is a set of assignments to the state variables. Each
state variable has exactly one value assigned from its re-
spective domain.
Let S be the set of all states. sI ∈ S is the initial state.
We identify sets of states that fulfill partial assignments.
In a partial assignment not all variables are assigned a
value. sG is a partial assignment and a state s ∈ S is
in the set of goal state if and only if sG ⊆ s.
An action a is applicable in a given state s if pre(a) ⊆ s.

By s′ = apply(a, s) we denote the state after executing the
action a in the state s, where a is applicable in s. All the
assignments in s′ are the same as in s except for the as-
signments in eff(a) which replace the corresponding (same
variable) assignments in s.

We say that two actions ai and aj are interfering if and
only if pre(ai) is inconsistent with eff(aj) or pre(aj) is in-
consistent with eff(ai).

A plan P of length k for a given planning task Π is
a sequence of actions P = 〈a1, . . . , ak〉 such that sG ⊆
apply(ak, apply(ak−1 . . . apply(a2, apply(a1, sI)) . . .)).

Example 1 Trucking Domain. A truck is moving between 3
locations LA, LB , and LC starting at LA. Two packages are
located atLA andLB , which can be picked up or dropped by
the truck at any of the given locations. The goal is to deliver
both packages to location LC . See Figure 1 for an illustra-
tion of the planning task. We model the problem using three
state variables: the location of the truck xT , dom(xT) =
(LA, LB , LC), and the location of the packages xP1 and
xP2 , dom(xP1) = dom(xP2) = (LA, LB , LC , T). We have
three kinds of actions: move (m), pickUp (pu), and drop (d).
For each j, k ∈ {A,B,C} and i ∈ {1, 2}
• m(Lj , Lk) = ({xT = Lj}, {xT = Lk})
• pu(Pi, Lj) = ({xT = Lj , x

Pi = Lj}, {xPi = T})
• d(Pi, Lj) = ({xT = Lj , x

Pi = T}, {xPi = Lj})

A possible plan for this planning task consists of the
following six actions P = 〈 pu(P1, LA), m(LA, LB),
pu(P2, LB),m(LB , LC),d(P1, LC),d(P2, LC) 〉.

SAT Solving
A Boolean variable is a variable with two possible val-
ues (True and False), a literal is a Boolean variable or its
negation, and a clause is a disjunction (OR) of literals. A
conjunctive normal form (CNF) formula is a conjunction
(AND) of clauses. A CNF formula is satisfiable if there is
an assignment of truth values to its variables that satisfies at
least one literal in each clause of the formula. An algorithm
that decides the satisfiability of a given CNF formula and (if
applicable) returns a satisfying assignment is called a SAT
solver.

The idea of incremental SAT solving is to utilize the effort
already spent on a formula to solve a slightly changed but
similar formula. The assumption based interface (Eén and
Sörensson 2003) has two methods. One adds a clause C and
the other solves the formula with additional assumptions in
form of a set of literals A:

add(C)

solve(assumptions = A)

The method solve determines the satisfiability of the con-
junction of all previously added clauses under the condition
that all literals in A are true.

SAT-Based Planning
The basic idea of solving planning as SAT (Kautz and Sel-
man 1992) is to encode the planning problem up to a certain
number of steps as a Boolean formula Fi such that Fi is
satisfiable if and only if there is a plan with i steps or less.
Thereby, a step commonly denotes a set of actions that can
be executed in parallel, i.e. simultaneously, in some con-
sistent way. Additionally, a valid plan must be constructible
from a satisfying assignment of Fi. To find a plan, it is com-
mon to check the plan encodings F0, F1, F2, . . . until the
first satisfiable formula is found (this approach is called se-
quential scheduling). The following constraints are encoded:

0. The values of state variables in the first step are consistent
with the initial state.

1. The values of state variables in the final step are consistent
with the goal conditions.

2. At each step, each state variable assumes exactly one
value from its respective domain.

3. If an action is executed at step t, then its preconditions are
satisfied at step t and its effects are valid at step t+ 1.

4. If a value of a state variable changes between steps t and
t + 1, then there must be an action at step t causing this
change by one of its effects.

5. Pairs of interfering actions are forbidden to be executed
simultaneously in one step.
For instance, the simplest approach to encode rule 5 is to

introduce clauses of the form (¬do(t)a1 ∨¬do
(t)
a2) for each pair

of actions (a1, a2) and the corresponding Boolean variables

1 Procedure PASAR(Π = (X,O, s0, sG))
2 k := 1;
3 F := AbstractEncode(Π);
4 while true do
5 Fk := Instantiate(F, k);
6 assignment := Solve(Fk);
7 if assignment = UNSAT then
8 k := IncreaseMakespan(k);
9 else

10 ρ := ExtractAbstractPlan(assignment);
11 (π, F) := RepairPlan(F, ρ);
12 if π 6= FAILURE then
13 return π;
14 end
15 end
16 end

Algorithm 1: PASAR planning procedure.

(do
(t)
a1 , do

(t)
a2) which indicate their execution at step t. This

leads to a purely sequential encoding without any actions
being executed in parallel.

A straight forward improvement of this encoding is the
foreach-step semantics (Rintanen, Heljanko, and Niemelä
2006) where parallel actions are allowed as long as they are
not interfering, i.e., as long as each possible action ordering
within each step results in a valid plan. The even more gen-
eral exists-step semantics also allows for the parallel execu-
tion of interfering actions as long as there exists some action
ordering within each step resulting in a valid plan (Rintanen,
Heljanko, and Niemelä 2006).

Counterexample Guided Abstraction Refinement
Counterexample Guided Abstraction Refinement (CEGAR)
has first been proposed in (Clarke et al. 2000) for the purpose
of improved model checking techniques. The general idea is
to maintain an abstraction of the actual problem which re-
laxes some of the system’s properties, simplifying the search
for a solution. If a state considered during search is found to
be invalid regarding the actual problem, it is considered as a
counterexample that can be used to refine the abstraction.

As automated planning features a combinatorial search
space just like model checking, CEGAR has been adopted
into planning approaches as well. As such, the paradigm
has been used as the basis for forward search heuristics
(Seipp and Helmert 2013) as well as for probabilistic plan-
ning (Chatterjee et al. 2005). To our best knowledge, we are
the first to introduce the CEGAR paradigm to SAT-based
planning.

CEGAR for SAT-based Planning
Our CEGAR-based planning procedure is described in Al-
gorithm 1. We begin to encode the given planning problem
into a set of propositional logic rules F that can be instan-
tiated into an actual formula Fk for any number of steps k
(makespan). Note that we do not add clauses from rule (5),
thus allowing any number of parallel actions as long as the
preconditions and effects of each applied action are met.

1 Procedure RepairPlan(F, 〈s0, A0, s1, A1, . . . , sk〉)
2 π := 〈〉;
3 for i = 0, . . . , k − 1 do
4 if InterferenceGraph(Ai) is cyclic then
5 A′i := Replan(si, si+1);
6 if A′i = FAILURE then
7 F := RefineAbstraction(F,Ai);
8 return FAILURE;
9 else

10 π = π ◦ ValidOrdering(A′i);
11 end
12 else
13 π = π ◦ ValidOrdering(Ai);
14 end
15 end
16 return (π, F);

Algorithm 2: Procedure of converting an abstract plan
into an actual plan.

s
0

s
1

s
i

s
i+1

s
k-1

s
k

...
A

0
A

1
A

i
A

i+1
A

k-2
A

k-1

s
i

s
i+1

...

...

Figure 2: Illustration of an abstract plan with action sets
〈A0, A1, . . . , Ak−1〉 (top) and the identification of a valid
arrangement of actions inAi to reach si+1 from si (bottom).

For increasing values of k, we attempt to solve the cor-
responding formula until the solver reports satisfiability.
Now, a sequence ρ of action sets Ai and intermediate states
si can be extracted from the satisfying assignment. We
call ρ an abstract plan. Next, we call the sub-procedure
RepairPlan(F, ρ) as described in Algorithm 2 to check the
validity of ρ and, if necessary, try to repair invalid steps in it.

The structure of an abstract plan is illustrated in Figure 2.
For each adjacent pair of states (si, si+1) that the solver
found, we check if the set of executed actions at step i is
consistent. We describe the dependencies between actions
in Ai with a simple interference graph where nodes are ac-
tions and a directed edge (a1, a2) indicates that a1 requires a
precondition that is removed by a2 (in other words: a1 must
be applied before a2). It follows that there is a valid ordering
of actions inAi if and only if the interference graph is cycle-
free. If there is a valid ordering, we can find it by applying
a topological sort on the graph. If the graph does contain a
cycle, then the involved nodes correspond to the set of con-
flicting actions.

If the interference graph of Ai contains a cycle, we may
attempt to replan this invalid step by starting a separate plan-
ning procedure where si is the initial state and si+1 is the
fully defined goal state. We employ a greedy best-first search
approach driven by a Hamming distance heuristic with ties
broken randomly. Note that this planning task is supposed
to be comparably easy if the plan is reparable, so we fix

a certain small time frame to solve this planning problem.
If no solution is found, we consider the set of interfering
actions as a counterexample to a valid plan. We add non-
interference clauses from rule (5) for the concerned set of
actions to the abstract formula F and report that the previ-
ously found abstract plan cannot be repaired. The procedure
is then restarted for the same makespan k, but with a refined
formula Fk. Note that even if the best-first search misses a
solution the solver does not become incomplete. Every plan
will be found eventually, albeit at a higher makespan.

There are two major reasons for specifically omitting the
non-interference clauses from the initial encoding. Firstly,
from a pragmatic point of view, non-interference clauses
are the most expensive part of a naı̈ve SAT encoding of a
planning problem, leading either to a very large number of
clauses or to a significant number of additional variables.
Secondly, the extent to which non-interference clauses are
added to the encoding essentially characterizes the action se-
mantics that is realized in the encoding. As we begin with-
out any non-interference clauses, we realize a form of ac-
tion parallelism that is equivalent to exists-step semantics
until we find some invalid, irreparable plan. Afterwards, re-
strictions are added gradually until a plan is found, result-
ing in foreach-step semantics in the worst case where non-
interference clauses are added for each pair of conflicting
actions.

Example 2 Applying PASAR to Example 1. The ini-
tial solving attempt may return a plan 〈A1, A2, A3〉 =
〈{pu(P1, LA),m(LA, LB)}, {pu(P2, LB),m(LB , LC)},
{d(P1, LC),d(P2, LC)}〉 along with the intermediate states
〈s0, s1, s2, s3〉. It has three steps with two actions each.
Next, we analyze the first set of actions A0 by building its
interference graph (Figure 3) and we find that the ordering
as indicated above leads to the intended result without any
inconsistencies. We proceed to analyzing A1 and then A2

in a similar way and thus find that the found plan with
established action orderings is valid. The plan can be output
as a solution.

As a nontrivial example, consider an adjusted version
of Example 1 where the truck may only contain a single
package at any given point in time. We introduce an addi-
tional state variable, l, dom(l) = (empty, full), that sig-
nalizes whether the truck has some package loaded. We add
{l = empty} to Pre(pu(Pi, Lj)) and to Eff(d(Pi, Lj)), and
we add {l = full} to Eff(pu(Pi, Lj)). Additionally, we in-
troduce another packageP3 (atLA) which needs to be trans-
ported to LC .

Running the proposed algorithm on this task, a minimum
makespan plan would be
〈{pu(P1, LA),pu(P3, LA),m(LA, LB)}, {m(LB , LC)},
{d(P1, LC),d(P3, LC),m(LC , LB)},
{pu(P2, LB),m(LB , LC)}, {d(P2, LC)}〉.
In this invalid plan, the truck loads two packages at once
in the very first step. Analyzing A0 leads to the insight that
the dependencies of the actions {pu(P1, LA),pu(P3, LA)}
are cyclic (Figure 3); the first action will always remove a
requirement for the second action. In order to correct the
plan, a state-space search attempting to reach s1 from s0

pu(P
1
, L

A
) m(L

A
, L

B
)

pu(P
1
, L

A
)

m(L
A
, L

B
)

pu(P
3
, L

A
)

Figure 3: Interference graph of {pu(P1, LA),m(LA, LB)}
(left) and {pu(P1, LA),pu(P3, LA),m(LA, LB)} (right).

is initiated. It fails because it is impossible to have both
packages inside the truck at the same time. Thereafter, we
add a non-interference clause between pu(P1, LA) and
pu(P3, LA) and restart the procedure. In the next iteration,
no more invalid plans of this kind will occur, and a valid
plan will be found similar to the previous example.

Makespan and Refinement Scheduling
In SAT-based planning, it is important by what amount the
makespan k is increased when the current makespan turns
out to be unsolvable (Rintanen 2004). We update k :=
max(k+ 1, 1.2k) each time IncreaseMakespan(k) is called,
ensuring that the the amount of considered steps grows ex-
ponentially until some initial abstraction is found.

Similarly, if an abstract plan is found, a high amount of
iterations may be necessary until all required refinements
have been added to the formula such that either a valid plan
can be constructed or the current makespan can be identi-
fied as overall unsatisfiable. In certain planning instances,
it may even be necessary to add each of the up to O(|O|2)
clauses between pairs of actions in order to find a valid plan.
To limit the number of refinement iterations in such cases,
we introduce a fallback mechanism that triggers as soon as
a certain large amount of refinements has been added during
the same makespan, as such a behavior indicates stagnation
in our planning process. In such a case, we add all remain-
ing non-interference clauses between actions that are still
missing, thus directly establishing the standard foreach-step
semantics rather than slowly converging towards it.

Improvement of Abstract Plans
We present a number of techniques to optimize the process
of repairing an abstract plan: State sparsification, step reduc-
tion, caching of partial plans, and step skipping.

State Sparsification As described in Algorithm 1, a for-
ward search procedure is initiated whenever some step i is
found to be invalid in an abstract plan, attempting to find a
valid plan between si and si+1. Contrary to usual planning
problems, the goal si+1 is a fully defined state, i.e. each
variable is assigned some value. This can be problematic
if some of the differences between si and si+1 are not es-
sential for the remainder of the plan, and if the action that
causes these changes turns out to be invalid with respect
to other actions. Essentially, the planning problem is over-
defined which makes it harder to find a valid plan.

To counteract this issue, we identify the partial assign-
ment ai that is relevant to the abstract plan for each step si.
When a forward search is initiated from state si the goal is to

fulfill ai+1. Note that we only start a forward search from a
state if a valid plan to reach it from the initial state is known.
Therefore the search always starts from a fully defined state
and all applicable actions are known.

To find the relevant partial assignments, we execute a
plan sparsification procedure directly after finding an ab-
stract plan. Beginning from the final state sk, we go back-
wards along the abstract plan and only keep the state as-
signments and actions which are essential to satisfying each
of the goals. At the final step k, we keep each goal assign-
ment sG and each action in Ak−1 that causes one of these
assignments. At a previous step i < k, we keep the set of
assignments in si that are required for the essential actions
from Ai, and we keep the actions in Ai−1 that are required
to produce one of the essential assignments. On a concep-
tual level, this procedure is similar to the backwards search
that is commonly employed to extract a plan from a planning
graph (Blum and Furst 1997).

Using the sparsified abstract plan, the actual goals of in-
dividual forward search sub-procedures can be expressed in
a more concise way. As a result, more focused state space
search can be employed.

Step Reduction After state sparsification, each set of ac-
tions Ai is analyzed as to whether it is actually required in
order to achieve the goal. More specifically, we try to re-
move Ai and si+1 from the abstract plan and execute the re-
maining plan. Any successive steps where some actions are
not applicable any more are removed in the same way. If all
goals are left satisfied in the end, then the shortened abstract
plan is still valid and can be used for the upcoming replan-
ning phase. This technique reduces the amount of necessary
replanning procedures and can also reduce the makespan of
the plans that are returned in the end.

Caching of Partial Plans In some cases, our procedure
will partially repair an abstract plan before failing at a cer-
tain step i because the actions in Ai are interfering in a non-
trivial way. The found plan prefix 〈A0, . . . , Ai−1〉 is then
discarded and the search for a new abstract plan begins. In
order to profit from such partial plans even in later itera-
tions, we cache the plan prefix by remembering its last valid
state si and the sequence of action sets 〈A0, . . . , Ai−1〉 that
leads to it. If we encounter state si in another abstract plan
at some later point, we can directly reuse the known plan
prefix instead of performing individual action orderings and
replannings. In our implementation, we use the sparsified
representation of si to achieve a higher number of matches
than if the whole state was remembered.

We proceed in a similar way for plan suffixes: In addi-
tion to repairing an abstract plan from start to goal, we can
also traverse it backwards starting from the goal and build
a valid plan suffix until some step j features an invalid set
of actions Aj . Note however that, unlike in a plan prefix, we
do not initiate a replanning procedure: When fixing the plan
from the start, we maintain the state that is reached after ex-
ecuting the current plan prefix and we can determine which
actions are applicable. During backwards traversal we do not
have a fully defined state but partial assignments as a result
of state sparsification. We then cache the earliest valid state

s
0

s
j

s
k

...... s
i+1

s
j-1

...
✓ ✓ ✓ ✓? ? ? ?

s
i

s
0

s
k

......
✓ ✓

Figure 4: Illustration of step skipping: Partially repaired ab-
stract plan (top), forward search by local step skipping (mid)
and by global step skipping (bottom). States in gray repre-
sent intermediate states from the abstract plan that are used
as a guidance for the forward search heuristics.

sj+1 together with the plan suffix Aj+1, . . . , Ak−1. When
encountering sj+1 later on, a shortcut to a goal state can be
taken.

Step Skipping As illustrated in Figure 4, assume that for
some plan repair process we already found a plan prefix
〈A0, . . . , Ai−1〉 from initial state s0 as well as a plan suffix
〈Aj+1, . . . , Ak−1〉 to a goal state sk, but that both of these
partial plans cannot be extended any further because their
respective adjacent steps i and j feature invalid action sets.
One of the following options applies:

1. For each l ∈ {i, i + 1, . . . , j − 1}, some plan from sl to
sl+1 can be found.

2. For some l ∈ {i, i + 1, . . . , j − 1}, sl+1 is unreachable
from sl. However, a plan between si and sj can be found.

3. sj is overall unreachable from si.

In case of option 1, the basic procedure as described in
Algorithm 1 will fully repair the plan if the admitted time
limit per replanning is large enough. This is not the case
if option 2 or 3 applies, as a local dead-end prevents the
abstract plan from being fully repaired.

In order to treat these cases accordingly and make the best
use of the found abstract plan, we introduce two stages of
step skipping. In this technique, we want to allow deviations
from the originally found sequence of states, but still utilize
them as an overall guideline.

In local step skipping, we employ a forward search plan-
ning procedure from si to sj , using {si+1, . . . , sj−1} as a
guidance in the form of a heuristic. In global step skipping,
we employ the same procedure from s0 to sk, again using
the states in between as a guidance.

For global step skipping, the exact heuristic h(s) we use
to estimate the remaining distance from a state s to the goal
is defined as

h(s) =

k∑
x=1

dM (s, sx) · cx−1 (1)

for a constant 1 < c < 2. For local step skipping, the same
heuristic applies with an adjusted range for x. The func-
tion dM (s, s′) evaluates the Hamming distance between two
states: it is equal to the amount of variable assignments that

are different between s and s′. In this case, we calculate the
distance from the current state s to each of the guiding states
{s1, . . . , sk}. The factor cx−1 serves as a weighting: simi-
larity to one of the guiding states is more valuable the closer
it is to the goal.

We modify the procedure from Algorithm 2 as follows:
Instead of the original procedure to repair the plan (line 5),
we attempt replanning with local step skipping for a certain
time frame. If this also fails, we employ global step skipping
for a certain time frame. Only if this fails as well, we refine
the abstraction and return “failure” for this abstract plan.

Implementation Details
We provide some essential details regarding the implemen-
tation of our approach.

We use the grounding of PDDL problem files into SAS+
provided by Fast Downward (Helmert 2006) to translate
problem instances into a ground representation that is well-
suited for the encoding into propositional logic.

We utilize incremental SAT solving for our planning pro-
cedure, i.e., only one single CNF formula is maintained and
extended over the course of the entire algorithm. For each
call of Instantiate(F, k) (Algorithm 1, line 5), the abstract
clauses F are added as necessary until all constraints for
steps 0, 1, . . . , k are encoded. The problem’s goal is encoded
as a set of assumptions that is considered only for the up-
coming Solve(Fk) call and dropped afterwards. This way,
clauses never need to be removed from the formula even
when the makespan is extended.

We use IPASIR, a generic interface for incremental SAT
solving (Balyo et al. 2016). As IPASIR can be used together
with any popular SAT solver, we chose Glucose (Audemard
and Simon 2009), a highly popular and award-winning SAT
solver, as our solving backend.

The source code of our approach is available at https://
github.com/froleyks/pasar.

Experimental Evaluation
In the following, we explain our experimental setup. All
experiments were conducted on a AMD Epyc 7551P with
64 virtual cores clocked at 2.0-3.0 GHz and 256GB DDR4
RAM, running Ubuntu 18.04.

We used the benchmarks from the satisficing and opti-
mal tracks of the International Planning Competitions (IPC)
2014 and 2018. We did not include any of the benchmarks
that include conditional effects, as our encoding is not yet
equipped to deal with these. We admit up to five minutes
of run time per instance. Up to 16 instances are executed in
parallel, but we ensure that this is done only for instances
of the same domain and the same planning approach, such
that out-of-memory issues do not interfere between different
domains or competitors.

The following variants of PASAR are evaluated:
• p1: The action sets Ai are checked for a valid ordering in

an abstract plan; no replanning is done.
• p2: If necessary, do forward search replanning between

neighbored states with state sparsification, step reduction,
and caching of partial plans.

• p3: Like p2, but with local step skipping instead of re-
planning between neighbored states.

• p4: Like p3, but with global step skipping as an additional
replanning procedure if local step skipping fails.

• p5: A hybrid variant where after a global time limit (200s)
forward search on the entire problem is employed if not
a single abstract plan has been found yet (Hamming dis-
tance heuristic, ties broken randomly).

The motivation for the configuration p5 is that we would
like to investigate whether SAT-based planning and conven-
tional greedy best-first planning can complement each an-
other in a beneficial way in our case. More specifically, in-
stances where no abstract plan can be found at all are ev-
idently difficult for a SAT solver, so we want to explore
how many of such instances are solvable with simple search
space techniques instead.

As a comparison, we include the SAT planner Mada-
gascar (Rintanen 2013) which uses its own integrated SAT
solver and makes use of various optimizations, both in its
default configuration with exists-step semantics (MpC) and
foreach-step semantics (Ma). As an approach that is more
similar to ours, we also compare PASAR to Incplan (Gocht
and Balyo 2017) where the encodings of Madagascar are
used but a general-purpose incremental SAT solver is em-
ployed (inca and ince with foreach- and exists-step seman-
tics respectively) . As a reference, we also include the state-
of-the-art planning system Fast Downward (Helmert 2006)
with the LAMA 2011 configuration (LAMA).

The domain-specific results of the evaluations are given
in Tab. 1, and Figure 5 visualizes the relative performances
between p[i] and p[i+1]. On some domains such as child-
snack, floortile or tetris, we can see that even the most ba-
sic approach p1 is able to effectively find valid plans by
not encoding any non-interference between actions and only
adding such clauses where necessary. Employing replanning
procedures between neighbored states in the abstract plan
(p2) does not lead to overall improvements over p1. How-
ever, extending these replanning procedures by using step
skipping (p3) yields drastic improvements in particular for
the openstacks domain. These results hardly improve by in-
cluding global step skipping (p4); it seems that in the most
cases where a plan is reparable within reasonable time con-
straints, local step skipping is already able to find it. Last but
not least, combining our procedure with a greedy state-space
search as a fallback option (p5) leads to surprising improve-
ments on multiple domains such as petri-net-alignment or
visitall, overall resulting in more solved instances than any
of the tested Madagascar variants. We can see here that the
capabilities of our partially SAT-based planning approach
and of “textbook forward search” are orthogonal up to a cer-
tain degree, and that a combination of both is appealing in
order to resolve a broad set of planning instances.

By looking at the scatter plots in Figure 5 we gain some
insight into the run times of PASAR versions p1 – p5. In
most cases (except for p1 vs p2 – the introduction of replan-
ning by forward search) the runtimes of the five versions
are very similar on the easy instances (solved in under two
minutes). The differences manifest in the top right corners

 0.1

 1

 10

 100

 0.1 1 10 100

Pa
sa

r
w

it
h
 f

o
rw

a
rd

 s
e
a
rc

h

Pure Pasar

 0.1

 1

 10

 100

 0.1 1 10 100

w
it

h
 l
o
ca

l
st

e
p

 s
ki

p
p

in
g

Pasar with forward search

 0.1

 1

 10

 100

 0.1 1 10 100

w
it

h
 g

lo
b

a
l
st

e
p

 s
ki

p
p

in
g

with local step skipping

 0.1

 1

 10

 100

 0.1 1 10 100

w
it

h
 f

a
llb

a
ck

 t
o
 s

e
a
rc

h

with global step skipping

Figure 5: Scatter plots between the run times of p[i] and p[i+1]. All measures are in seconds. Timeouts are plotted at t = 300s.

(the harder instances) and in the number of solved instances.
From that we can conclude that the versions are somewhat
orthogonal on the harder instances and similar on easy ones.

As for the comparison to the competitors (see Table 1),
in many domains we match the performance of LAMA, but
there are domains such as opt-barman, sat-ged, or sat-termes
where the SAT-based planners do not stand a chance. The
Madagascar planners (Ma, MpC) perform very well on do-
mains such as opt-barman and opt-tidybot, but the results do
not transfer to inca or ince (that use the same encoding as Ma
and MpC with a standard incremental SAT solver), which
indicates that it is the special features (related to heuris-
tic search) of Madagascar’s custom SAT solver that solve
these problems. Overall, we can see that our best non-hybrid
PASAR version p4 can outperform inca and ince, which rep-
resent the state-of-the-art planning as satisfiability when us-
ing off-the-shelf SAT solvers. If we include a forward search
with the trivial Hamming distance heuristic in PASAR (ver-

sion p5), we can outperform both Madagascar versions. We
still have a lot of work to do to match the overall perfor-
mance of LAMA; however, in some domains such as child-
snack, floortile, and snake we can already solve a lot more
instances.

Conclusion
In this paper, we have presented a novel SAT-based plan-
ning approach that utilizes the paradigm of counterexample
guided abstraction refinement. We have argued that omit-
ting non-interference clauses between actions is an appro-
priate abstraction for the case of SAT-based planning, and
that we achieve a solving procedure with a small amount
of clauses and a significant amount of actions executed in
parallel. We have presented an approach to transform an ab-
stract found plan into an actual plan, which makes use both
of conventional planning techniques and of novel optimiza-
tion strategies tailored to our specific use case. In thorough

Table 1: Number of solved instances per domain and competitor. Numbers in brackets indicate for how many instances any
abstract plan has been found. The row “Wins” indicates in how many domains the respective approach was one of the best
approaches regarding solved instances.

Domain LAMA Ma MpC inca ince p1 p2 p3 p4 p5
opt-barman 8 14 14 0 1 2(14) 3(14) 3(14) 3(14) 3(14)
sat-barman 19 0 4 0 0 0(20) 0(20) 0(20) 0(20) 0(20)
opt-childsnack 11 20 15 20 20 20(20) 20(20) 20(20) 20(20) 20(20)
sat-childsnack 5 16 7 20 15 20(20) 20(20) 20(20) 20(20) 20(20)
opt-data-network 20 20 20 20 20 20(20) 20(20) 20(20) 20(20) 20(20)
sat-data-network 11 4 4 2 4 2(20) 2(20) 2(20) 2(19) 2(20)
opt-floortile 8 20 20 17 20 20(20) 20(20) 20(20) 20(20) 20(20)
sat-floortile 2 20 20 15 20 20(20) 20(20) 20(20) 20(20) 20(20)
opt-ged 20 20 20 20 20 20(20) 20(20) 20(20) 20(20) 20(20)
sat-ged 20 13 12 0 0 0(0) 0(0) 0(0) 0(0) 0(0)
opt-hiking 20 10 9 19 18 16(20) 18(20) 16(20) 16(20) 16(20)
sat-hiking 15 4 6 7 8 4(10) 5(10) 5(9) 5(9) 6(9)
opt-openstacks 20 20 20 0 0 4(20) 0(20) 18(20) 18(20) 16(20)
sat-openstacks 17 2 0 0 0 0(2) 0(11) 0(0) 0(1) 4(4)
opt-organic-synthesis-split 16 12 12 11 11 9(15) 9(15) 9(14) 10(14) 9(14)
sat-organic-synthesis-split 6 7 7 3 4 4(9) 3(9) 3(9) 3(10) 3(6)
opt-petri-net-alignment 20 1 14 0 15 7(7) 10(10) 7(7) 10(10) 16(15)
opt-snake 12 15 15 5 4 4(4) 4(4) 3(3) 3(3) 20(3)
sat-snake 3 7 7 0 0 1(1) 0(0) 1(1) 1(1) 17(0)
opt-termes 18 0 1 2 5 2(12) 3(12) 2(12) 2(12) 2(12)
sat-termes 13 0 0 0 0 0(3) 0(3) 0(2) 0(3) 0(3)
opt-tetris 17 15 17 12 17 17(17) 17(17) 17(17) 17(17) 17(17)
sat-tetris 9 5 8 3 6 11(20) 10(20) 11(20) 10(20) 11(20)
sat-thoughtful 15 5 5 5 5 5(5) 5(5) 5(5) 5(5) 5(5)
opt-tidybot 15 16 20 1 2 0(9) 0(10) 0(4) 0(3) 1(5)
opt-transport 20 20 20 18 20 13(14) 14(15) 14(16) 13(16) 14(15)
sat-transport 8 0 0 0 0 0(0) 0(0) 0(0) 0(0) 0(0)
opt-visitall 20 20 20 6 6 11(11) 9(9) 10(10) 11(11) 20(8)
sat-visitall 19 0 0 0 0 0(0) 0(0) 0(0) 0(0) 20(0)

Total Solved 407 306 317 206 241 232 232 246 249 322
Wins 18 10 11 4 7 8 7 8 7 12

evaluations, we showed that our SAT-based approach is able
to solve a considerable set of IPC benchmark instances, per-
forming better than state-of-the-art SAT-based planning on
multiple domains. We have found that employing simple
forward search techniques in the case where our abstraction
fails to effectively approximate the original problem enables
us to solve even more instances, indicating that a combi-
nation of these techniques is highly attractive for efficient
automated planning.

Future Work

For future work, we would like to integrate conditional ef-
fects into our planning approach in order to make PASAR
useful for a wider set of realistic planning instances. Further-
more, we will consider different approaches to parallelize
our approach in an effective way. Last but not least, we will
explore more relaxed abstractions for our approach, enabling
it to find an initial abstract plan in more cases than before.

References
Audemard, G., and Simon, L. 2009. Predicting learnt
clauses quality in modern SAT solvers. In Twenty-first In-
ternational Joint Conference on Artificial Intelligence.
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence 11:625–656.
Balyo, T.; Biere, A.; Iser, M.; and Sinz, C. 2016. SAT Race
2015. Artificial Intelligence 241:45–65.
Balyo, T. 2013. Relaxing the relaxed exist-step parallel
planning semantics. In 2013 IEEE 25th International Con-
ference on Tools with Artificial Intelligence, 865–871. IEEE
Computer Society.
Blum, A., and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artificial Intelligence 90(1-2):281–
300.
Chatterjee, K.; Henzinger, T. A.; Jhala, R.; and Majumdar,
R. 2005. Counterexample-guided planning. In Twenty-
First Conference on Uncertainty in Artificial Intelligence,
UAI’05, 104–111. Arlington, Virginia, United States: AUAI
Press.
Clarke, E.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith, H.
2000. Counterexample-guided abstraction refinement. In
International Conference on Computer Aided Verification,
154–169. Springer.
Eén, N., and Sörensson, N. 2003. Temporal induction by
incremental SAT solving. Electronic Notes in Theoretical
Computer Science - BMC’2003, First International Work-
shop on Bounded Model Checking 89(4):543–560.
Fikes, R., and Nilsson, N. J. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
Artificial Intelligence 2(3/4):189–208.
Gocht, S., and Balyo, T. 2017. Accelerating SAT
based planning with incremental SAT solving. In Twenty-
Seventh International Conference on Automated Planning
and Scheduling.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research (JAIR) 26:191–
246.
Huang, R.; Chen, Y.; and Zhang, W. 2010. A novel transi-
tion based encoding scheme for planning as satisfiability. In
Twenty-Fourth AAAI Conference on Artificial Intelligence.
AAAI Press.
Kautz, H. A., and Selman, B. 1992. Planning as satisfia-
bility. In Tenth AAAI Conference on Artificial Intelligence,
359–363.
Rintanen, J.; Heljanko, K.; and Niemelä, I. 2006. Plan-
ning as satisfiability: parallel plans and algorithms for plan
search. Artificial Intelligence 170(12-13):1031–1080.
Rintanen, J. 2004. Evaluation strategies for planning as
satisfiability. In ECAI, volume 16, 682.
Rintanen, J. 2013. Planning as satisfiability: state of the art.
https://users.aalto.fi/rintanj1/satplan.html.
Robinson, N.; Gretton, C.; Pham, D. N.; and Sattar, A. 2009.
SAT-Based parallel planning using a split representation of

actions. In Nineteenth International Conference on Auto-
mated Planning and Scheduling, ICAPS 2009. AAAI Press.
Seipp, J., and Helmert, M. 2013. Counterexample-guided
cartesian abstraction refinement. In Twenty-Third Interna-
tional Conference on Automated Planning and Scheduling.

